Competitions

# By steps of 2019 ACM NEERC, Bad Treap

# Increasing sines 1

Find and print **n** integers `x`

, _{1}`x`

, ..., _{2}`x`

so that this sequence and the sequence of their sines are strictly increasing:_{n}

`x`

< _{1}`x`

< ... < _{2}`x`

_{n}

sin(`x`

) < sin(_{1}`x`

) < ... < sin(_{2}`x`

)_{n}

#### Input

One positive integer **n** (**n** ≤ `10`

).^{4}

#### Output

Print in one line the sequence of integers `x`

, _{1}`x`

, ..., _{2}`x`

, satisfying the condition of the problem. Members of the sequence by absolute value must be no more than _{n}`2`

- ^{31}**1** (|`x`

| < _{i}`2`

).^{31}

#### Hint

For the given sample **sin**(**-8**) < **sin**(**-2**) < **sin**(**0**) < **sin**(**9**) < **sin**(**15**) is true since it is equivalent to **-0.989** < **-0.909** < **0** < **0.412** < **0.650**.
We have also: **-8** < **-2** < **0** < **9** < **15**.

Input example #1

5

Output example #1

-8 -2 0 9 15