e-olymp
Задачи

Треугольная реформа

Треугольная реформа

Король Полигонии Трианг IV помешан на реформах. Чтобы войти в мировую историю, он решил провести территориальную реформу в своей стране. Страна Полигония имеет форму простого многоугольника, то есть ее граница не имеет самопересечений и самокасаний. В Полигонии большую роль играют внутренние диагонали — отрезки, соединяющие вершины государственной границы и полностью проходящие по территории страны, не касаясь границы. При этом форма Полигонии такова, что никакие две внутренние диагонали не лежат на одной прямой.

Вместо традиционного деления государства на административные округа король Трианг IV решил разделить свою страну на административные треугольники внутренними диагоналями. Для сокращения управляющего аппарата король повелел подготовить такой план деления страны, в котором количество административных треугольников будет минимальным.

Требуется написать программу, выполняющую деление Полигонии внутренними диагоналями на минимально возможное число административных треугольников.

Входные данные

В первой строке входного файла записано число N (3N20) — количество вершин многоугольника, образующего границу Полигонии. В следующих N строках находятся по 2 целых числа, по абсолютной величине не превосходящие 10000 — координаты вершин в порядке обхода многоугольника против часовой стрелки. Гарантируется, что никакие три последовательные вершины многоугольника не лежат на одной прямой, и он не имеет самопересечений и самокасаний. Также гарантируется, что никакие две диагонали, содержащиеся внутри многоугольника, не лежат на одной прямой.

Выходные данные

В первую строку выходного файла выведите наименьшее количество административных треугольников, на которое можно разбить Полигонию.

Во вторую строку выведите количество различных внутренних диагоналей K, с помощью которых можно произвести данное разбиение.

В каждую из следующих K строк выведите 4 целых числа — координаты начала и конца соответствующей диагонали разбиения, полностью лежащей внутри многоугольника и не проходящей по его границе.

Если искомых разбиений несколько, выведите любое из них.

Лимит времени 1 секунда
Лимит использования памяти 64 MiB
Входные данные
Sample 1
4
0 0
1 0
1 1
0 1

Sample 2
10
-6 0
0 2
6 0
3 3
6 4
2 4
0 6
-2 4
-6 4
-3 3
Выходные данные
Sample 1
2
1
1 1 0 0

Sample 2
4
3
2 4 -2 4
0 2 3 3
-3 3 0 2